线性回归的计算

$P = A(A^TA)^{-1}A^T$

$$A^TAx = A^Tb​$$

复习:

$P = A(A^TA)^{-1}A^T$

b = p+e

p=Pb

e = b - p = b - Pb = (I-P)b

(因为b = e + Pb, 所以e= b-Pb = (I-P)b) $$ e = b - p \\
e垂直于a \\
A^T(b-p) = 0 \\
A^Tp = A^Tb \\
A^TA \hat x = A^T b $$

例题

线性拟合的问题是最小化 $\Vert e \Vert^2 = \Vert Ax - b \Vert^2 = e_1^2 + e_2^2 + e_3^2$

不处理偏离的的值(outlier)

$$A^TA = \begin{bmatrix} 1 & 1 & 1 \\
1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\
1 & 2 \\
1 & 3 \end{bmatrix}=\begin{bmatrix}3 & 6 \\\ 6 & 14 \end{bmatrix}$$

$$ A^Tb = \begin{bmatrix} 1 & 1 & 1 \\
1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\
2\\
2 \end{bmatrix}=\begin{bmatrix}5 \\\ 11 \end{bmatrix}$$ 得到 $$ 3C + 6D = 5 \\
6C + 14D = 11 $$ 同时根据偏导求极值有: $$\Vert e \Vert^2 = e_1^2 + e_2^2 + e_3^2 \\\ =(C+D-1)^2 + (C+2D-2)^2 + (C+3D-2)^2 \\\ =3C^2 + 12CD-10C+14D^2 -22D + 9 \\
\begin{cases} \frac{\delta f}{\delta C} = 6C + 12D - 10 = 0 \\
\frac{\delta f}{\delta D} = 12C+28D-22 = 0 \end{cases} \\
即: \begin{cases} \frac{\delta f}{\delta C} = 3C + 6D = 5 \\
\frac{\delta f}{\delta D} =6C+14D= 11 \end{cases} $$ (多项式运算参考:Symbolab)

消元求得,D=12, C = 23 所以求得的最佳直线为:y = 23 + 1/2t

P1 = 76, P2=53, P3 = 136

$$b =\begin{bmatrix}1 &2 &2 \end{bmatrix}$$ e = b - p 于是: e1 = -16, e2 = 26, e3 = -16

而且有$p \cdot e = 0$ (验证一下)

e同时垂直于列空间的其他向量,比如说(1 1 1 )、(1, 2, 3)垂直(叉积为0)

证明:A的列独立时,$A^TA$可逆

假设$A^TAx = 0$, 那么x=0 (当A可逆,A的零空间只有{0}):

$x^TA^TAx = 0 => (Ax)^T (Ax) = 0 => (Ax)^2 = 0 => Ax = 0$

A有独立列时,且Ax= 0, 那么x = 0

如果列是垂直的单位向量(perpendicular unit vector),那么他们一定是独立的。

垂直的单位向量,又称orthonormal vector - 规划正交向量。

视频连接