MathJax基础教程和快速索引
mathjax 基础教程
credit: https://math.meta.stackexchange.com/questions/5020/mathjax-basic-tutorial-and-quick-reference
上下标 | \sum_{i=0}^n | $\sum_{i=0}^n$ |
---|---|---|
分组 | x^{y+z} | $x^{y+z}$ |
括弧 | (2+3) | $(2+3)$ |
[4+5] | $[4+5]$ | |
\vert x \vert | $\vert x \vert$ | |
\Vert x \Vert | $\Vert x \Vert$ | |
\langle x\rangle | $\langle x\rangle$ | |
\lceil x \rceil | $\lceil x \rceil$ | |
\lfloor x \rfloor | $\lfloor x \rfloor$ | |
\left( x \right) | $\left( x \right)$ | |
\Biggl(\biggl(\Bigl(\bigl((x)\bigr)\Bigr)\biggr)\Biggr) | $\Biggl(\biggl(\Bigl(\bigl((x)\bigr)\Bigr)\biggr)\Biggr)$ | |
求和和积分 | \sum_1^\infty | $\sum_1^\infty$ |
\prod | $\prod$ | |
\int | $\int$ | |
\bigcup | $\bigcup$ | |
\bigcap | $\bigcap$ | |
\iint | $\iint$ | |
\iiint | $\iiint$ | |
\idotsint | $\idotsint$ | |
分数 | \frac{1}{2} | $\frac{1}{2}$ |
\frac ab | $\frac ab$ | |
{a+1\over b+1} | ${a+1\over b+1}$ | |
\cfrac{a}{b} | $\cfrac{a}{b}$ | |
根号 | \sqrt{x} | $\sqrt{x}$ |
矩阵 | \begin{matrix} 1 & x \\1 & y \end{matrix} | $\begin{matrix} 1 & x \\ 1 & y \ \end{matrix} $$ |
pmatrix | \begin{pmatrix} 1 & x \\ 1 & y \end{pmatrix} | $\begin{pmatrix} 1 & x \\ 1 & y \end{pmatrix} $ |
bmatrix | \begin{bmatrix} 1 & x \\ 1 & y \end{bmatrix} | $\begin{bmatrix} 1 & x \\ 1 & y \end{bmatrix} $ |
Bmatrix | \begin{Bmatrix} 1 & x \\ 1 & y \end{Bmatrix} | $\begin{Bmatrix} 1 & x \\ 1 & y \end{Bmatrix}$ |
vmatrix | “\begin{vmatrix} 1 & x \\ 1 & y \end{vmatrix}” | $\begin{vmatrix} 1 & x \\ 1 & y \end{vmatrix}$ |
符号 | \lt \gt \le \leq \leqq \leqslant \ge \geq \geqq \geqslant \neq | $\lt \gt \le \leq \leqq \leqslant \ge \geq \geqq \geqslant \neq$ |
\times \div \pm \mp \cdot | $\times \div \pm \mp \cdot$ | |
\cup \cap \setminus \subset \subseteq \subsetneq \supset \in \notin \emptyset \varnothing | $\cup \cap \setminus \subset \subseteq \subsetneq \supset \in \notin \emptyset \varnothing$ | |
\to \rightarrow \leftarrow \Rightarrow \Leftarrow \mapsto | $\to \rightarrow \leftarrow \Rightarrow \Leftarrow \mapsto$ | |
\land \lor \lnot \forall \exists \top \bot \vdash \vDash | $\land \lor \lnot \forall \exists \top \bot \vdash \vDash$ | |
\star \ast \oplus \circ \bullet | $\star \ast \oplus \circ \bullet$ | |
\approx \sim \simeq \cong \equiv \prec \lhd \therefore | $\approx \sim \simeq \cong \equiv \prec \lhd \therefore$ | |
\infty \aleph_0 \nabla \partial \Im \Re | $\infty \aleph_0 \nabla \partial \Im \Re$ | |
\epsilon \varepsilon \phi \varphi \ell | $\epsilon \varepsilon \phi \varphi \ell$ | |
空格 | a\,b\;c \quad d \qquad e | $a\,b\;c \quad d \qquad e$ |
上标 | \hat x \widehat {xy} \bar {xyz} \vec x \overleftrightarrow x \dot x \ddot x | $\hat x \widehat {xy} \bar {xyz} \vec x \overleftrightarrow x \dot x \ddot x$ |
\alpha, \beta , …, `\omega |
$\alpha \beta \omega$ | |
\Gamma , \Delta , …, \Omega : $\Gamma, \Delta, …, \Omega |
$\Gamma, \Delta, …, \Omega$ | |
度数 | 45^\circ | $45^\circ$ |
颜色 | \color{red}1 | $\color{red}1$ |
加重 | c \textbf{v} + d \textbf{w} | $c \textbf{v} + d \textbf{w}$ |
矩阵中竖线
\left[ \begin{array}{cc|c} 1&2&3\\ 4&5&6 \end{array} \right]
生成:
矩阵中横线
$$
\begin{pmatrix}
a & b\\
c & d\\
\hline
1 & 0\\
0 & 1
\end{pmatrix}
$$
小型矩阵
$\bigl( \begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \bigr)$
$\bigl( \begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \bigr)$
公式对齐
\begin{align}
\sqrt{37} & = \sqrt{\frac{73^2-1}{12^2}} \\
& = \sqrt{\frac{73^2}{12^2}\cdot\frac{73^2-1}{73^2}} \\
& = \sqrt{\frac{73^2}{12^2}}\sqrt{\frac{73^2-1}{73^2}} \\
& = \frac{73}{12}\sqrt{1 - \frac{1}{73^2}} \\
& \approx \frac{73}{12}\left(1 - \frac{1}{2\cdot73^2}\right)
\end{align}
$$
\begin{align}
\sqrt{37} & = \sqrt{\frac{73^2-1}{12^2}} \\
& = \sqrt{\frac{73^2}{12^2}\cdot\frac{73^2-1}{73^2}} \\\
& = \sqrt{\frac{73^2}{12^2}}\sqrt{\frac{73^2-1}{73^2}} \\
& = \frac{73}{12}\sqrt{1 - \frac{1}{73^2}} \\
& \approx \frac{73}{12}\left(1 - \frac{1}{2\cdot73^2}\right)
\end{align}
$$
定义
f(n) =
\begin{cases}
n/2, & \text{if $n$ is even} \\\\\\
3n+1, & \text{if $n$ is odd}
\end{cases}
$$
f(n) =
\begin{cases}
n/2, & \text{if $n$ is even} \\
3n+1, & \text{if $n$ is odd}
\end{cases}
$$
数组和对齐:
\begin{array}{c|lcr}
n & \text{Left} & \text{Center} & \text{Right} \\\\\\
\hline
1 & 0.24 & 1 & 125 \\\\\\
2 & -1 & 189 & -8 \\\\\\
3 & -20 & 2000 & 1+10i
\end{array}
$$
\begin{array}{c|lcr}
n & \text{Left} & \text{Center} & \text{Right} \\
\hline
1 & 0.24 & 1 & 125 \\
2 & -1 & 189 & -8 \\
3 & -20 & 2000 & 1+10i
\end{array}
$$
方程组:
\left\{
\begin{aligned}
a_1x+b_1y+c_1z &=d_1+e_1 \\
a_2x+b_2y&=d_2 \\
a_3x+b_3y+c_3z &=d_3
\end{aligned}
\right.
高亮
$$ \bbox[yellow,5px]
{
e^x=\lim_{n\to\infty} \left( 1+\frac{x}{n} \right)^n
\qquad (1)
}
$$
$$ \bbox[yellow,5px] { e^x=\lim_{n\to\infty} \left( 1+\frac{x}{n} \right)^n \qquad (1) } $$
$$ \bbox[5px,border:2px solid red]
{
e^x=\lim_{n\to\infty} \left( 1+\frac{x}{n} \right)^n
\qquad (2)
}
$$
$$ \bbox[5px,border:2px solid red] { e^x=\lim_{n\to\infty} \left( 1+\frac{x}{n} \right)^n \qquad (2) } $$
```