Linear Algebra Lecture 7: Solving Ax = 0: pivot variables, special solutions
Ax=b and null space.
本讲继续上一讲,通过消元法,进一步阐述零空间的求解。A的特解为
$$N=x = c \begin{bmatrix} -F \\\ I \end{bmatrix}$$
总结:
通过消元法,矩阵变成阶梯型矩阵R=rref(A)。
进一步对上三角进行消元,然后把主元归于I,自由向量归于F,则A的特解为
$$N=x = c \begin{bmatrix} -F \\\ I \end{bmatrix}$$
What’s the algorithm so solve Ax=b?
- Rank of A: # of pivot
- Free columns: can assign any number and can still sove the equation.
- Null Space
- $Null(A) = \{ v \in V: AVv = 0 \}$
ref: Lec 7 | MIT 18.06 Linear Algebra, Spring 2005
ref: wikipedia