Column space of A: solving Ax = b Null space of A

Vector space:

v+w and cv are in the space or all vector linear combations cv + dw are in the space

Subspace

子空间的定义:1. 必须过零点, 2 线性组合仍然在此子空间内。

Plane through (0 0 0) is a subspace - P

Line through (0 0 0) is a subspace L

Is $P \cup L$ a subspace? no

because if I add vector from P and a vector from L is not on the subspace

Is $P \cap L $ s subspace? yes

$P \cap L $ is zero

Generally Subspace S and T, $S \cap T$ is subspace.

Example

Columne space of A, A is subspace of $R^4$

举一个非独立矩阵的例子, 下面的例子,

这个矩阵含有3个4维向量, 第3列向量是前两列的线性组合, 是没有用的。。所以它的列空间(列向量的线性组合)不能长成整个4维空间。

所以对于b不为零,是不是都有解,但解不是子空间,因为他的解构成的子空间不通过0

$$ A = \begin{bmatrix} 1 & 1 & 2 \\
2 & 1 & 3 \\
3 & 1 & 4 \\
4 & 1 & 5 \end{bmatrix} $$

then the columns of A is in subsapce. All the combinations of the columns are in the subspace.

Is the subspace full file the 4-D space.

Does Ax=b have a solution for every b? No 4 equations with 3 unknowns

$$ Ax = \begin{bmatrix} 1 & 1 & 2 \\
2 & 1 & 3 \\
3 & 1 & 4 \\
4 & 1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\
x_2 \\
x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\
b_2 \\
b_3 \\
b_4 \end{bmatrix} $$

I can solve Ax=b exactly when b is in the column space.

Can I solve b = [ 1 2 3 4 ]?
X = [1 0 0] solves it.

Can I sovel b = [ 1 1 1 1]?
X = [0 1 0] solves it.

b = [0 0 0 0 ] is always OK.

*I can solve Ax = b exact when b is a comninations of the columns of A – C(A)

Does each column contribute something new or not?

For the above example, column 3 is col1 + col2, and does not contribute to the subspace.

so we called column 1 and 2 independent.

And A is 2-D subspace of $R^4$

Null Space

所有x使得Ax=0所构成的空间叫做零空间。

找出符合条件的x, 上面的例子,x很好找,比如(1, 1, -1), 那么$\lambda x $ 都是Ax=0的解,$\lambda x $ 为矩阵A的零空间。

因为$\lambda x $ 经过A的变换都变成零向量了。

all solutions $ X = \begin{bmatrix} x_1 \\
x_2 \\
x_3 \end{bmatrix} $ to Ax = 0 in $R^3$

$$ Ax = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \\ 4 & 1 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} $$

then we have X = c $\begin{bmatrix} 1 \\
1 \\
-1 \\
\end{bmatrix} $ would be the solution.

think of geometry , null space is line through zero.

Check the solutions to Ax = 0 always givce a subspace.

然后证明$\lambda x $ 符合子空间定义

If Av = 0 , and Aw = 0. then A(v+w) = 0** because A(v+w) = Av + Aw

and A(12V) = 0 becuase A(12v) = 12Av

然后说明哪些不构成子空间, 重点在强调子空间的定义的第一点:必须过原点。

Do the X solutions form a subspace when b is not zero? No

because zero does not solve the solution, [1 0 0] is solution [0 -1 1]. it’s like a plane does not go thru. origion or line does not go thru the origin.

So X does not form a subspace.

Subspace has to go thru. the origin.

Essential of Subspace :

  • columns space: few vectors makes a subspace
  • the equations has to be satisfied also defines a subspace