• Inverse of $ AB, A^T $

  • Product of elimation matrices

A = LU ( no row exchanges)

What’s the invers of AB

$$AA^{-1} = I = A^{-1}A$$ $$(AB)(B^{-1}A^{-1}) = I$$ $$B^{-1}A^{-1}AB = I$$

Transpose

$$(A^{-1})^T A^T = I $$ $$(A^{-1})^T = (A^T)^{-1}$$

FInd A = LU, find L.

$$ E_{21}\quad A = U $$
$$ \begin{bmatrix} 2 & 1 \\\\\\ 8 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\\\\\ 0 & 3 \end{bmatrix} $$
$$ A = L \quad U $$
$$ \begin{bmatrix} 2 & 1 \\\\\\ 8 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\\\\\ 4 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\\\\\ 0 & 3 \end{bmatrix} $$
U stands for upper triangular. L stands for lower triangular. L U also could be :
$$ \begin{bmatrix} 1 & 0 \\\\\\ 4 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\\\\\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & \frac {1}{2} \\\\\\ 0 & 1 \end{bmatrix} $$
Let's talk 3x3 matrix elimation
$$ E_{32}E_{31}E_{21}A = U (no\;row\;exchange) $$
I want the invers of Es
$$ A = E_{21}^{-1}E_{31}^{-1}E_{32}^{-1}U $$ $$ L = E_{21}^{-1}E_{31}^{-1}E_{32}^{-1} $$
For eample,
$$ E_{21}E_{31} = $$ $$ \begin{bmatrix} 1 & 0 & 0 \\\\\\ 0 & 1 & 0 \\\\\\ 0 & -5 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\\\\\ -2 & 1 & 0 \\\\\\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\\\\\ -2 & 1 & 0 \\\\\\ 10 & -5 & 1 \end{bmatrix} $$

A = LU

If no row exchanges, mutipliers go directly into L

How many elimations operations on n x n matrix A?

Typical is multiply and substract. first step for first row cost about 99x99 steps, second would cost 98x98 steps…. We can count it as

$$n^2 + (n-1)^2 + ... + 3^2 + 2^2 +1^2 \approx \frac {1}{3}n^3 $$

Permutation

$$P^{-1}= P^T$$