Linear Algebra Lecture 4: Factorization into A = LU
Inverse of
$ AB, A^T $
Product of elimation matrices
A = LU ( no row exchanges)
What’s the invers of AB
$$AA^{-1} = I = A^{-1}A$$
$$(AB)(B^{-1}A^{-1}) = I$$
$$B^{-1}A^{-1}AB = I$$
Transpose
$$(A^{-1})^T A^T = I $$
$$(A^{-1})^T = (A^T)^{-1}$$
FInd A = LU, find L.
$$
E_{21}\quad A = U
$$
$$
\begin{bmatrix}
2 & 1 \\\\\\
8 & 7
\end{bmatrix}
=
\begin{bmatrix}
2 & 1 \\\\\\
0 & 3
\end{bmatrix}
$$
$$
A = L \quad U
$$
$$
\begin{bmatrix}
2 & 1 \\\\\\
8 & 7
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 \\\\\\
4 & 1
\end{bmatrix}
\begin{bmatrix}
2 & 1 \\\\\\
0 & 3
\end{bmatrix}
$$
U stands for upper triangular.
L stands for lower triangular.
L U also could be :
$$
\begin{bmatrix}
1 & 0 \\\\\\
4 & 1
\end{bmatrix}
\begin{bmatrix}
2 & 0 \\\\\\
0 & 3
\end{bmatrix}
\begin{bmatrix}
1 & \frac {1}{2} \\\\\\
0 & 1
\end{bmatrix}
$$
Let's talk 3x3 matrix elimation
$$
E_{32}E_{31}E_{21}A = U (no\;row\;exchange)
$$
I want the invers of Es
$$
A = E_{21}^{-1}E_{31}^{-1}E_{32}^{-1}U
$$
$$
L = E_{21}^{-1}E_{31}^{-1}E_{32}^{-1}
$$
For eample,
$$
E_{21}E_{31} =
$$
$$
\begin{bmatrix}
1 & 0 & 0 \\\\\\
0 & 1 & 0 \\\\\\
0 & -5 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 \\\\\\
-2 & 1 & 0 \\\\\\
0 & 0 & 1
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\\\\\
-2 & 1 & 0 \\\\\\
10 & -5 & 1
\end{bmatrix}
$$
A = LU
If no row exchanges, mutipliers go directly into L
How many elimations operations on n x n matrix A?
Typical is multiply and substract. first step for first row cost about 99x99 steps, second would cost 98x98 steps…. We can count it as
$$n^2 + (n-1)^2 + ... + 3^2 + 2^2 +1^2 \approx \frac {1}{3}n^3 $$
Permutation
$$P^{-1}= P^T$$