• Matrix multiplication: (4 ways!)
  • Inverse of $ A, AB, A^T $
  • Gaiss-Hordan / Find $A^{-1}​$

Given $ A_{m \times n} B_{n \times p} = C_{m \times p}$

Method 1: element view

$=a_{31}b_{14}+a_{32}b_{24}+... =\sum_{k=1}^n a_{3k}b_{k4}$

Method 2: vector view

$C_{34} = (row\,3\,of\,A) \cdot (column\,4\,of\,B)$

Method 3:

rows of C are combinations of rows of B

columns of C are combinations of columns of A

Method 4:

AB = sum of (columns of A ) x (rows of B) $$ \begin{bmatrix} 2 & 7 \\
3 & 8 \\
4 & 9 \end{bmatrix} \begin{bmatrix} 1 & 6 \\
0 & 0 \end{bmatrix} = \begin{bmatrix} 2 \\
3 \\
4 \end{bmatrix} \begin{bmatrix} 1 \\
6 \end{bmatrix} + \begin{bmatrix} 7 \\
8 \\
9 \end{bmatrix} \begin{bmatrix} 0 \\
0 \end{bmatrix} $$

Block:

Same as plutiplications of elements $$ \begin{bmatrix} A_1 & A_2 \\
A_3 & A_4 \end{bmatrix} \begin{bmatrix} B_1 & B_2 \\
B_3 & B_4 \end{bmatrix} = \begin{bmatrix} A_1B_1+A_2B_3 & A_1B_2+A_2B_4 \\
A_3B_1+A_4B_2 & A_3B_2+A_4B_4 \end{bmatrix} $$

Inverse (Square matrices)

$$A^{-1}A = I = A A^{-1}$$

non-invertable and why: e.g. $$ A = \begin{bmatrix} 1 & 3 \\
2 & 6 \end{bmatrix} $$ because I can’t find vector x with Ax = 0.

Gauss-Jordan: find `$A^{-1}###

$$ \begin{bmatrix} 1 & 3 \\
2 & 7 \end{bmatrix} \begin{bmatrix} a & c \\
b & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\
0 & 1 \end{bmatrix} $$ $$ A \qquad A^{-1} \quad =\quad I $$ We can write this as : $$ \begin{bmatrix} 1 & 3 \\
2 & 7 \end{bmatrix} \begin{bmatrix} a \\
b \end{bmatrix} = \begin{bmatrix} 1 \\
0 \end{bmatrix} $$ $$ \begin{bmatrix} 1 & 3 \\
2 & 7 \end{bmatrix} \begin{bmatrix} c \\
d \end{bmatrix} = \begin{bmatrix} 0 \\
1 \end{bmatrix} $$ Let’s bring them together and do the elimations:

$$ \left[ \begin{array}{cc|cc} ​ 1 & 3 & 1 & 0 \\
​ 2 & 7 & 0 & 1 \end{array} \right] -> \left[ \begin{array}{cc|cc} ​ 1 & 3 & 1 & 0 \\
​ 0 & 1 & -2 & 2 \end{array} \right] -> \left[ \begin{array}{cc|cc} ​ 1 & 0 & 7 & -3 \\
​ 0 & 1 & -2 &1 \end{array} \right] $$

$$ A \qquad I \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad I \qquad\qquad A $$

EA = I tells us $ E = A^{-1}$ $$E[A\;I] = [I\;A^{-1}]$$